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The Kupradze matrix of fundamental solution of the system of thermoelasticity equations for a semimoment
isotropic medium with account for the relaxation time of thermal perturbations in it has been obtained.

Introduction. In solving problems (including boundary ones) for a wide range of systems of second-order,
partial differential linear equations in three-dimensional elasticity theory, the method of potentials and the theory of in-
tegral equations are widely used [1–3]. In the majority of cases, potentials are determined from the fundamental of
other singular solutions of corresponding differential equations [4]. The construction of fundamental solutions of equa-
tions for homogeneous and inhomogeneous isotropic or anisotropic media with or without regard for the couple
stresses in them on the basis of algebraic methods was described in sufficient detail in [4, 5]. In the present work, this
important direction of investigations was developed for semimoment, isotropic, thermoelastic medium, the thermal
properties of which are described by a hyperbolic heat-conduction equation.

Matrix Differential Operator. The system of equations for the generalized interrelated dynamic problem on
the thermoelasticity of a semimoment isotropic medium in the Cartesian coordinate system can be represented in the
following form [6–8]:

(λ + µ + η∆) grad div u + (µ − η∆) ∆u + 
ρ
2

 rot l + ρf = ρu
..

 + β grad θ ,

K∆θ − cε (θ
.
 + τθ

..
) = βT0 (div u

.
 + τ div u

..
) − q .

(1)

It is assumed that external forces acting on the indicated medium (body forces f, volume moments l, internal heat
sources q) oscillate with a frequency ω. In this case, from (1) we obtain the following equation for the thermoelastic
vibrational state of this medium:

(λ + µ + η∆) grad div uk + (µ − η∆) ∆uk + ρω2
uk − β grad θ = 0 ,   k = 1, 3

___
 ,

K∆θ + cε (iω + τω2)θ + βT0 (iω + τω2) div u + q = 0 .

(2)

Let us introduce the matrix differential operator

M = 




Mkl

4×4

 . (3)

Here, Mjn = ((λ + µ) + η∆)∂j∂n + ((µ − η∆)∆ + ρω2)δjn, where n, j = 1, 3
___

; M4n = (i + τω)ωT0β∂n; Mn4 = −β∂n; and
M44 = K∆ + (i + τω)cεω.

The equation for the thermoelastic vibrational state of the semimoment thermoelastic medium being considered
can be written with account for the relaxation time of thermal perturbations and corresponding f, l, and q in the fol-
lowing form:

MU = 0 , (4)

where M is the matrix differential operator (3). The determinant of the matrix M is equal to
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det  M  = µ2
 (λ + 2µ) 








1 − 

η∆
µ



 ∆ + k2

2



2

 ∆ + β1
2
 

∆ + β2

2
 . (5)

We now determine the algebraic complement mkl of the element Mkl in the determinant det NMN. After simple trans-
formations, we obtain

mnn = µ 



∆ − 

η
µ

 ∆2
 + k2

2


 



T0ωβ

2
 (i + ωτ) ∆ − ∂n

2
 + (cεω (i + ωτ) + K∆)




 ×

× 

µ − η ∆ − ∂n

2


 ∂n

2
 − η∂n

4
 + (λ + 2µ) ∆ − ∂n

2
 + ω2ρ ,

mnj = − µ T0ωβ
2
 + (cεω (i + ωτ) + K∆) (λ + µ +η∆) 




∆ − 

η
µ

 ∆2
 + k2

2


 ∂n∂j ,

mn4 = − (i + ωτ) T0ωβµ
2
 



∆ − 

η
µ

 ∆2
 + k2

2



2

 ∂n ,

m44 = µ2
 (λ + 2µ) 




∆ + 

ω2ρ
(λ + 2µ)




 



∆ − 

η
µ

 ∆2
 + k2

2



2

 ,

m4n = βµ2
 



∆ − 

η
µ

 ∆2
 + k2

2



2

 ∂n ,   n ≠ j ,   n, j = 1, 3
___

 .

(6)

Let us express the column vector U in terms of the matrix differential operator P^  obtained by transposing of m:

U = P^ ϕ . (7)

Substitution of U into (4) gives

MP^ ϕ = 







µ2

 (λ + 2µ) δkl 







1 − 

η∆
µ



 ∆ + k2

2



 2

 ∆ + β1
2
 

∆ + β2

2
 ϕ 









 = 0 ,   j, k = 1, 4
___

 . (8)

From relation (8) defining the function ϕ follows the equation








1 − 

η∆
µ



 ∆ + k2

2



2

 ∆ + β1
2
 

∆ + β2

2
 ϕ = 0 .

Since all the elements of the matrix P^  include the multiplier 







1 − 

η∆
µ



 ∆ + k2

2


 ϕ, it will be sufficient to de-

termine the function ψ in the following form:

ψ = µ2
 (λ + 2µ) 






1 − 

η∆
µ



 ∆ + k2

2


 ϕ . (9)

For this purpose, we will use the equation


∆ + β1

2
 

∆ + β2

2
 

∆ + β3

2
 

∆ + β4

2
 ψ = 0 . (10)

Matrix of Fundamental Solutions. Let us find the solution of (10) for which the six-order partial derivatives
will have singularities of the form x

−1 = (x1
2 + x2

2 + x3
2)−1 ⁄ 2. The desired solution should satisfy the following conditions:
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∆ + βk

2
 ψ = 

γ
x

 exp iβk+1 x 

βk+2

2
 − βk+3

2 
 + 

+ exp iβk+2 x 

βk+3

2
 − βk+1

2 
 + exp iβk+3 x 


βk+1

2
 − βk+2

2 


 ,

where γ = (2π(βk+2
2  − βk+3

2 )(βk+1
2  − βk+3

2 )(βk+1
2  − βk+2

2 ))−1, β5 B β1, β6 B β2, β7 B β3, and k = 1, 4
___

. Hence it follows that
the function ψ is equal to

ψ = 
1

2π x
  ∑ 

k=1

4

 
exp iβk x


βk+1

2
 − βk

2
 

βk+2

2
 − βk

2
 

βk+3

2
 − βk

2


 . (11)

Substitution of the function ψ into (7) with account for the expression








1 − 

η∆

µ




 ∆ + k2

2


 ϕ = 

ψ

µ2
 (λ + 2µ)

(12)

gives, after simple transformations, the matrix of fundamental solutions of the system of equations

Γ (x, ω) = 



Γkl (x, ω)



4×4

 . (13)

Here

Γjj = − γ ∑ 

k=1

4
exp (i x βk)

x
 cεω (i + τω) 


λ + µ − ηβk

2
 ×

× 
1 − i x βk

x
2  

3xj
2
 − x

2

x
2  + βk

2
 



λ +  2µ − λ + µ − ηβk

2
 

xj
2

x
2








 +

+ T0ωβ
2
 (i + τω) 





1 − i x βk

x
2  

3xj
2
 − x

2

x
2  + βk

2
 
x

2
 − xj

2

x
2




 −

− Kβk
2
 



(λ + µ) 

1 − i x βk

x
2  

3xj
2
 − x

2

x
2  +

+ βk
2
 



λ + 2µ − λ + µ − ηβk

2
 

xj
2

x
2 − η 

1 − i x βk

x
2  

3xj
2
 − x

2

x
2








 



 ;

Γjn = γ ∑ 

k=1

4
exp (i x βk)

x
 
xjxn

x
2
 



βk

2
 − 

3 (1 − i x βk)

x
2




 ×

× ω (i + ωτ) T0β
2
 + cε (α + µ) + Kηβk

4
 − 

K (λ + µ) + cεωη (i + ωτ)


 βk

2
 ;

Γj4 = γ ∑ 

k=1

4
exp (i x βk)

x
 
(1 − i x βk)

x
 
xjβ βk

2
 µ + βk

2λ − ω2ρ

x
 ;
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Γ4j = − γ ∑ 

k=1

4
exp (i x βk)

x
 
(1 − i x βk)

x
 
xjT0ωβ (1 + iτ) βk

2
 µ + βk

2λ − ω2ρ

x
 ;

Γ44 = 
γ exp (i x βk)

x
 ω

2ρ − (λ + 2µ) βk
2
 

ω

2ρ − µ + ηβk
2
 βk

2
 ;

γ = − 2π βk+1
2

 − βk
2
 

βk+2

2
 − βk

2
 

βk+3

2
 − βk

2




−1
 . 

Each column of matrix (13), considered as a vector, fits system (4) at all the points of the space E3, except
for the origin of coordinates.

Conclusions. Formulas (13) can be used to describe of the thermoelastic vibrational state of a semimoment
isotropic medium with account for the time of relaxation of thermal perturbations. At τ = 0, the fundamental matrix
(13) for the system of hyperbolic-thermoelasticity equations of a semimoment medium is transformed into the Ku-
pradze matrix for the thermoelastic semimoment medium, the thermal properties of which are defined by the classical
thermoelasticity law.

NOTATION

cε, heat capacity at a constant deformation; i, imaginary unit; k2
2 = ρω2 ⁄ µ; K, heat-conductivity coefficient; q,

quantity of heat produced in a unit volume for a unit time; T0, initial temperature; u = (u1, u2, u3), displacement vec-

tor; U = (u1, u2, u3, θ), four-component vector-column; αt, coefficient of thermal expansion; β, constant relating the

mechanical and thermal stresses, β = αt(3λ + 2µ);  β1
2 + β2

2 =  − 




(i + τω)T0ωβ2

K(λ + 2µ)
 + 
(i + τω)cεω

K
 + 

ρω2

λ + 2µ



 ; β1

2β2
2 =

icεω
3ρ(i + τω)

K(λ + 2µ)
; β3

2 + β4
2 = − 

µ
η

; β3
2β4

2 = − 
µk2

2

η
; δjn, Kronecker symbol; ∆, Laplace operator; η, micropolar elastic con-

stant; ϕ, scalar function; λ, µ, Lame′ constants; θ, temperature change; ρ, density of a medium; τ, relaxation of thermal

perturbations; ∂n = ∂ ⁄ ∂xn; ω, oscillation frequency; point, differentiation with respect to time. Subscripts: t, thermal.
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